If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-147=0
a = 1; b = 2; c = -147;
Δ = b2-4ac
Δ = 22-4·1·(-147)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{37}}{2*1}=\frac{-2-4\sqrt{37}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{37}}{2*1}=\frac{-2+4\sqrt{37}}{2} $
| (6x−30)+(8x+28)=180 | | -x^2+0-75=0 | | -8.7-6z-7.4-4z=-9z+10.4 | | 3x-7(x+1)=-8x-11 | | 2x^2+1=159 | | X2+6x+3=-10 | | 2x+10=7x+-5 | | 8x2+15x=7x−4 | | q/4+6=9 | | 3(2-4x)=10 | | s+90=265 | | 3x+3+4x+5=2x+23 | | 4(8g+10)-2g=-10-10+10g | | 2x+7-5x=13 | | x+0.08x=174.96 | | 360=(6x+30)+(10x+22) | | 360=6x+30+10x+22 | | -4.1n-2.96=-2.7n-1.7 | | 174.96=x+0.8x | | 4(t+6)-18=-14 | | 55,000=10,000(1.05)3x | | 11x-7+116࿀=1+7x+7x | | x-0.9x=54 | | 5(6400-4y/5)+4y=6400 | | 250+10w=150+20w | | x/13=73 | | 4w+20=80 | | 3x-4=4×+5 | | 2.4x1.1+3.9÷3= | | X/3x+10=25 | | 3(4x-3)-60=30 | | 14/y+4/y=3 |